Contest for 10.E and 9.B

26.05.2015

General Instructions

Remember that all answers to each problem should be written on the sheet provided with a whole number between 0000 and 9999, or at least with a sequence of 4 figures. You must always write 4 digits, for example by including the initial zeros as in: 0002.

If the answer is not an integer number, indicate its integer part. The integer part of a real number x is the largest integer less than or equal to x.

If the required amount is a negative number, or if the problem has no solutions, write 0000.

If the answer is a number greater than 9999, or if it is not uniquely determined, write 9999.

When calculating, it may be useful to consider the following approximate values: $\sqrt{2} = 1,414$ $\sqrt{3} = 1,732$ $\sqrt{5} = 2,24$, $\pi = 3,14$

n. (Questions
1	LENGHT ABCE is a square and BCF and CDE are equilateral triangles. If AB is of length 1, what is the length of FD. The answer is the solution multiplied by 1000.
2	AGE
	My teacher said that the product of his age and his father's age was 2010 in the year 2010. In what year my teacher born?
3	ANGLE
	What is the value of angle marked with a question mark?
	What is the value of angle marked with a question mark?

INTEGERS
How many integers are there, such that the sum of their digits is 2015 and the product of their digits is 2?
FROM CIRCLE TO CIRCLE
In the figure we have to go from circle A to circle B following the arrows. On each walk we compute the sum of all numbers we passed through: How many different sums can we $ \begin{array}{c} & (1) \rightarrow (2) \rightarrow (1) \rightarrow (B) \\ & \uparrow & \uparrow & \uparrow \\ & (2) \rightarrow (3) \rightarrow (2) \\ & \uparrow & \uparrow & \uparrow \\ & (4) \rightarrow (1) \rightarrow (2) \rightarrow (1) \end{array} $
TUESDAYS
Three Tuesdays of a month coincided with even dates. What day of a week was the 21^{st} day of this month? The answer is a number: Monday = 1, Tuesday = 2,
CIRCLE
A circle of radius 4 cm is divided into four congruent parts by arcs of radius 2 cm as whether the second s
SCATTER GRAPH
The scatter graph shows the distance run and time taken from some time-trials run by 5 students. Who was the fastest?
Bea Alicia
FOLDED TRIANGLE
A triangle is folded along the dotted line to obtain a figure as shown in the picture. The area of the triangle is 1.5 times that of the resulting figure. Given that the total area of the three shaded regions is 1. Find the area of the original triangle.

10	SUPERMARKET
	In a supermarket trolley park, there are two lines of tightly-packet trolleys. The first line has ten trolleys and is 2.9 m long. The second line has twenty trolleys and is 4.9 m long.
	What is the length of one trolley measured in cm?
11	BIG TRIANGI F
••	The big equilateral triangle consist of 36 smaller equilateral triangles with area 1 cm^2
	\bigwedge
	each. Find the area of ABC Δ .
12	ISOSCELES TRAPEZOID
	In an isosceles trapezoid ABCD, X is the midpoint of the lateral side AB, $BX = 1$,
	and $CXD_{4} = 90^{\circ}$. Find the perimeter of trapezoid ABCD.
13	PARALLEL LINES
	Lines parallel to the base divide each of the other two sides of the triangle shown into 10
	Á
	equal segment. Which percentage of the area of triangle is grey?
14	INTEGER52
	For how many integers n ($1 \le n \le 100$) is the number n^n a perfect square?
15	OCTOPUS
	Six-, seven- and eight – legged octopus serve the underwater king. Those who have got 7 legs always lie, but those with 6 or 8 legs – always tell the truth. One day four octopuses met. The blue one said: "Altogether we've got 28 legs", the green one said: "Altogether we've got 27 legs", the yellow one said: "Altogether we've got 26 legs", the red one said: "Altogether we've got 25 legs". How many legs has the red octopus got?

16	SEGMENTS
10	Sectiments In the figure, $\alpha \angle = 7^{\circ}$, and the segments OA_1 , A_1A_2 , A_2A_3 , are all equal. What is the greatest number of OA_1 , A_1A_2 , A_2A_3 , equal segments that can be drawn in this way? O A A A A A A A A A A A A A
17	SEQUENCE
	In a sequence the first 3 elements are 1, 2, and 3. From the 4 th element on the next element is calculated from the previous 3 elements, the third was substracted from the sum of the 1 st and the 2 nd one: 1, 2, 3, 0, 5 -2, 7, What is the 2015 th element of the sequence?
18	PENTAGON
	On each side of a pentagon there is a natural number such that adjacent numbers never have a common divisor greater than 1 and non adjacent numbers always have a common divisor greater than 1. There are several possibilities, but one of the following numbers will never occur on any of the sides of the pentagon. Which one is it? 162; 18; 19; 21; 22
19	AVERAGE
	How many 3-digit integers have the property that their central digit is the average of the other two?
20	OVAL
	An oval is built by four arcs of circles. The arcs on the left and right are the same and also the arcs above and below. The oval has vertical and horizontal line of symmetry. The oval fits exactly in a rectangle of length 4x8. The radius of the little arcs is 1. What
	is the radius of the big arcs?